您所在位置: 首页 >> 师资队伍 >> 教授 >> 正文
罗正钱

系别:电子工程系

职称:教授、博导、电子工程系主任

邮箱:zqluo@xmu.edu.cn

联系方式:0592-2580141

办公地点:海韵园行政楼B-518

个人简历:

学习或工作经历:

2000-2004 哈尔滨工业大学,理学学士,应用物理学

2004-2009 厦门大学工学,博士,光电子

2007-2009 新加坡南洋理工大学,联合培养博士,光电子

2010-2017 厦门大学电子工程系, 助理教授/副教授

2015-至今 厦门大学电子工程系,博士生导师

2016-2017 麻省理工学院(MIT),访问学者

2017-至今 厦门大学电子工程系,教授


研究方向:

光纤激光器与应用、片上集成硫系光子器件、非线性光纤光学


主讲课程:

光纤通信系统(本科生课)

光纤光学(研究生课)

光电子器件原理及应用(研究生课)


学术兼职:

IEEE Senior Member (高级会员)

中国激光杂志社首届青年常务编委

福建省光学学会副秘书长、常务理事

OSA Member


成果奖励:

福建省特支双百计划青年拔尖人才(2018

福建省杰出青年科学基金获得者(2017

厦门大学南强青年拔尖人才B 2018

福建省新世纪优秀人才 2015


课题项目:

1. 全光纤可见光超快涡旋激光产生及光场动态调控研究,国家自然科学基金重大研究计划(培育),2018.01-2020.12,主持

2. 拓扑绝缘体及模间拍频锁模新机制用于中红外超快拉曼光纤激光器的研究,国家自然科学基金(面上)项目,2015.01-2018.12,主持

3. 基于新型二维材料的紫外超快激光研究,福建省杰出青年科学基金,2017.042020.03,主持

4. 福建省特支双百计划青年拔尖人才,2018.062021.06,主持

5. 二维材料锁模中红外光纤飞秒激光器及其在精密加工生物医用电极的研究,厦门大学校长基金,48万,2018.01-2020.12,主持

6. 基于新型二维纳米材料的全光纤紫外超短脉冲激光研究,深圳市科技计划项目,30万,2016.06-2018.06,主持

7. 用于半导体超薄掩膜选择性刻蚀的激光系统,深圳市XXX能源技术有限公司,33万,2018.03-2018.12, 主持

8. 2微米波段石墨烯被动调Q掺铥双包层光学激光器的研究,国家自然科学基金(面上)项目,2012.01-2015.12,主持

9. 3-5 μm可调谐中红外光纤参量振荡器研究,国家自然科学基金 (青年)项目,2012.01-2014.12,主持


代表作:

[1]  Lin H, Song Y, Huang Y, Kita D, Deckoff-Jones S, Wang K, Li L, Li J, Zheng H, Luo Z, Wang H, Novak S, Yadav A, Huang C, Shiue R, Englund D, Gu T, Hewak D, Richardson K, Kong J and Hu J, 2017. Chalcogenide glass-on-graphene photonics, Nature Photonics, 11: 798-805.

[2]  Luo Z, Wu D, Xu B, Xu H, Cai Z, Peng J, Weng J, Xu S, Zhu C, Wang F, Sun Z, and Zhang H, 2016. Two-dimensional material-based saturable absorbers: Towards compact visible-wavelength all-fiber pulsed lasers, Nanoscale, 8: 1066-1072.  (ESI高被引论文)

[3] *Luo Z, Li Y, Zhong M, Huang Y, Wan X, Peng J, Weng J, 2015. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser [Invited], Photonics Research, 3(3): A79-A86. (ESI高被引论文/特邀论文)

[4]  *Luo Z, Zhou M, Weng J, Huang G, Xu H, Ye C, and Cai Z, 2010. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser, Optics Letters, 35: 3709-3711.  (ESI高被引论文)

[5] *Luo Z, Liu C, Huang Y, Wu D, Wu J, Xu H, Cai Z, Lin Z, Sun L, Weng J, 2014. Topological-insulator passively Q-switched double-clad fiber laser at 2 μm wavelength. IEEE Journal of Selected Topics in Quantum Electronics, 20 (5): 0902708.  (ESI高被引论文)

[6]  *Luo Z, Huang Y, Zhong M, Li Y, Wu J, Xu B, Xu H, Cai Z, Peng J, Weng J, 2014. 1, 1.5 and 2 μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber. IEEE/OSA Journal of Lightwave Technology, 32 (24):4077- 4084.  (ESI高被引论文)

[7] *Luo Z, Huang Y, Weng J, Cheng H, Lin Z, Xu B, Cai Z, Xu H, 2013. 1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber, Optics Express, 21(24): 29516-29522.  (ESI高被引论文)

[8] Huang Y, *Luo Z, Li Y, Zhong M, Xu B, Che K, Xu H, Cai Z, Peng J, Weng J, 2014. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber, Optics Express, 22(21):25258-25266. (ESI高被引论文)

[9] Du T, *Luo Z, Yang R, Huang Y, Ruan Q, Cai Z, Xu H, 2017. 1.2-W average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er: Yb co-doped double-clad fiber laser, Optics Letters, 42(3): 462-465. (ESI高被引扩展版论文)

[10] Li W, Zou J, Huang Y, Wang K, Du T, Jiang S, and *Luo Z, 2018. 212-kHz-linewidth, transform-limited pulses from a single-frequency Q-switched fiber laser based on a few-layer Bi2Se3 saturable absorber, Photonics Research, 6:C29-C35. (特邀论文/封面论文)

[11] Du Q, *Luo Z, Zhong H, Zhang Y, Huang Y, Du T, Zhang W, Gu T, and Hu J, 2018. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide, Photonics Research6: 506-510.

[12] Luo Z, Ruan Q, Zhong M, Cheng Y, Yang R, Xu B, Xu H, Cai Z, 2016. Compact self-Q-switched green upconversion Er:ZBLAN all-fiber laser operating at 543.4 nm, Optics Letters, 41:2258-2261.

[13] Luo Z, Zhong M, Xiong F, Wu D, Huang Y, Li Y, Le L, Xu B, Xu H, Cai Z, 2015. Intermode beating mode-locking technique for O-band mixed-cascaded Raman fiber lasers, Optics Letters, 40 (4):502-505.

[14] Huang Y, *Luo Z, Xiong F, Li Y, Zhong M, Cai Z, Xu H, Fu H, 2015. Direct generation of 2 W average-power and 232 nJ picosecond pulses from an ultra-simple Yb-doped double-clad fiber laser, Optics Letters, 40 (6): 1097-1100.

[15] Luo Z, Zhong W, Tang M, Cai Z, Ye C, and Xiao X, 2009. Fiber-optic parametric amplifier and oscillator based on intracavity parametric pump technique, Optics Letters, 34: 214-216.

[16] Xu H, Wan X, Ruan Q, Yang R, Du T, Chen N, Cai Z, *Luo Z, 2018. Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in anomalous dispersion regime: simulations and experiments, IEEE Journal of Selected Topics in Quantum Electronics, 24 (3), 1100209.

[17] Jia F, Chen H, Liu P, Huang Y, *Luo Z, 2015. Nanosecond-pulsed, dual-wavelength passively Q-switched c-cut Nd:YVO4 laser using a few-layer Bi2Se3 saturable absorber, IEEE Journal of Selected Topics in Quantum Electronics, 21 (1): 1601806.

[18] Du T, Ruan Q, Yang R, Li W, Wang K, and *Luo Z, 2018. "1.7-μm Tm/Ho-Codoped All-Fiber Pulsed Laser Based on Intermode-Beating Modulation Technique," IEEE/OSA Journal of Lightwave Technology, 36: 4894-4899.

[19] Luo Z, Zhou M, Wu D, Ye C, Weng J, Dong J, Xu H, Cai Z, and Chen L, 2011. Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers, IEEE/OSA Journal of Lightwave Technology, 29: 2732-2739.

[20] Luo Z, Ye C, Fu H, Cheng H, Wang J, and Cai Z, 2012. Raman fiber laser harmonically mode-locked by exploiting the intermodal beating of CW multimode pump source, Optics Express, 20:19905-19911.

[21] Li W, Wang H, Du T, Xu B, Cai Z, Xu H, and *Luo Z, 2018. Compact self-Q-switched, tunable mid-infrared all-fiber pulsed laser, Optics Express 26: 34497-34502.

[22] Li L, Ruan Q, Yang R, Zhao L, and *Luo Z, 2016. Bidirectional operation of 100 fs bound solitons in an ultra-compact mode-locked fiber laser, Optics Express, 24: 21020-21026.

[23] Du T, Li W, Ruan Q, Wang K, Chen N, and *Luo Z, 2018. 2 µm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser, Applied Physics Express, 11: 052701.

[24] *Luo Z, Zhou M, Cai Z, Ye C, Weng J, Huang G, and Xu H, 2011. Graphene-assisted multiwavelength erbium-doped fiber ring laser, IEEE Photonics Technology Letters, 23: 501-503.

[25] Luo Z, Huang Y, Wang J, Cheng H, Cai Z, and Ye C, 2012. Multiwavelength dissipative-soliton generation in Yb-fiber laser using graphene-deposited fiber-taper, IEEE Photonics Technology Letters, 24: 1539-1542.

[26] Wu D, *Luo Z, Xiong F, Zhang C, Huang Y, Chen S, Cai W, Cai Z, Xu H, 2014. Passive synchronization of 1.06 and 1.53 μm Q-switched fiber laser using a common graphene Q-switcher, IEEE Photonics Technology Letters, 26(14):1474-1477.

[27] *Luo Z, Zhong W, Cai Z, Ye C, Xu H, Dong X, and Xia L, 2009. Multiwavelength fiber optical parametric oscillator, IEEE Photonics Technology Letters, 21: 1609-1611.

[28] Li R, Zou J, Li W, Wang K, Du T, Wang H, Sun X, Xiao Z, Fu H, and *Luo Z, 2018. Ultrawide-Space and Controllable Soliton Molecules in a Narrow-Linewidth Mode-Locked Fiber Laser, IEEE Photonics Technology Letters, 30: 1423-1426.

[29] Ruan Q, *Luo Z, Wan X, Yang R, Wang Z, Xu B, Cai Z, Xu H, 2017. 1.61–1.85 µm Tunable All-Fiber Raman Soliton Source Using a Phosphor-Doped Fiber Pumped by 1.56 µm Dissipative Solitons. IEEE Photonics Journal, 9(1):7100807.

[30] *Luo Z, Zhong M, Ruan Q, Huang Y, Guo C, Xu H, Che K, Xu B, Cai Z,2016. 0.1-1 THz High-Repetition-Rate Femtosecond Pulse Generation from Quasi-CW Dual-Pumped All-Fiber Phase-Locked Kerr Combs, IEEE Photonics Journal, 8: 1501007.



Top